506 research outputs found

    Decellularized bovine meniscus in morphological assessment prior to bioscaffold preparation

    Get PDF
    Decellularization is a process of tissue treatment targeting cell removal. Sonication system was developed in order to decellularize meniscus tissues. The samples were sonicated in 0.1% sodium dodecyl sulphate (SDS) for 10 hours and at 40 kHz ultrasound frequency. All the samples were structurally examined using van Gieson, Picrosirius red, Safranin-O/Fast green staining, and scanning electron microscopic (SEM) observation. Histological analysis of sonication treated-samples by van Gieson staining demonstrated complete nuclei removal compared to the control samples. The Picrosirius red and Safranin-O/Fast green staining indicate the preservation of collagen and glycosaminoglycans (GAGs) structure, respectively. In addition, the morphological observation by SEM shows the availability of micropores on the surface of decellularized sample. Consequently, the sonication decellularization treatment did not affect extracellular matrix (ECM) properties, while forming micropores on the surface of meniscus tissues. This made it possible to proceed in other fulfillment of bioscaffold preparation

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure

    Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals

    Get PDF
    The femtosecond optical pump-probe technique was used to study dynamics of photoexcited electrons and coherent optical phonons in transition metals Zn and Cd as a function of temperature and excitation level. The optical response in time domain is well fitted by linear combination of a damped harmonic oscillation because of excitation of coherent E2gE_{2g} phonon and a subpicosecond transient response due to electron-phonon thermalization. The electron-phonon thermalization time monotonically increases with temperature, consistent with the thermomodulation scenario, where at high temperatures the system can be well explained by the two-temperature model, while below \approx 50 K the nonthermal electron model needs to be applied. As the lattice temperature increases, the damping of the coherent E2gE_{2g} phonon increases, while the amplitudes of both fast electronic response and the coherent E2gE_{2g} phonon decrease. The temperature dependence of the damping of the E2gE_{2g} phonon indicates that population decay of the coherent optical phonon due to anharmonic phonon-phonon coupling dominates the decay process. We present a model that accounts for the observed temperature dependence of the amplitude assuming the photoinduced absorption mechanism, where the signal amplitude is proportional to the photoinduced change in the quasiparticle density. The result that the amplitude of the E2gE_{2g} phonon follows the temperature dependence of the amplitude of the fast electronic transient indicates that under the resonant condition both electronic and phononic responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review

    Detecting the (Quasi-)Two-Body Decays of τ\tau Leptons in Short-Baseline Neutrino Oscillation Experiments

    Full text link
    Novel detector schemes are proposed for the short-baseline neutrino experiments of next generation, aimed at exploring the large-Δm2\Delta m^2 domain of \omutau oscillations in the appearance mode. These schemes emphasize good spectrometry for charged particles and for electromagnetic showers and efficient reconstruction of \ypi_gg decays. The basic elements are a sequence of relatively thin emulsion targets, immersed in magnetic field and interspersed with electronic trackers, and a fine-grained electromagnetic calorimeter built of lead glass. These elements act as an integral whole in reconstructing the electromagnetic showers. This conceptual scheme shows good performance in identifying the τ\tau (quasi-)two-body decays by their characteristic kinematics and in selecting the electronic decays of the τ\tau.Comment: 34 pages, 8 figure

    Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling

    Get PDF
    Articular cartilage protects and lubricates joints for smooth motion and transmission of loads. Owing to its high water content, chondrocytes within the cartilage are exposed to high levels of hydrostatic pressure, which has been shown to promote chondrocyte identity through unknown mechanisms. Here, we investigate the effects of hydrostatic pressure on chondrocyte state and behavior, and discover that application of hydrostatic pressure promotes chondrocyte quiescence and prevents maturation towards the hyperlrophic state. Mechanistically, hydrostatic pressure reduces the amount of trimethylated H3K9 (K3K9me3)-marked constitutive heterochromatin and concomitantly increases H3K27me3-marked facultative heterochromatin. Reduced levels of H3K9me3 attenuates expression of pre-hypertrophic genes, replication and transcription, thereby reducing replicative stress. Conversely, promoting replicative stress by inhibition of topoisomerase II decreases Sox9 expression, suggesting that it enhances chondrocyte maturation. Our results reveal how hydrostatic pressure triggers chromatin remodeling to impact cell fate and function. This article has an associated First Person interview with the first author of the paper.Peer reviewe

    Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing

    Full text link
    A simple model of the neutrino mixing is considered, which contains only one right-handed neutrino field, coupled via the mass term to the three usual left-handed fields. This is a simplest model that allows for three-flavour neutrino oscillations. The existing experimental limits on the neutrino oscillations are used to obtain constraints on the two free mixing parameters of the model. A specific sum rule relating the oscillation probabilities of different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9

    Neutrino Oscillations in the Framework of Three-Generation Mixings with Mass Hierarchy

    Get PDF
    We have analyzed the results of reactor and accelerator neutrino oscillation experiments in the framework of a general model with mixing of three neutrino fields and a neutrino mass hierarchy that can accommodate the results of the solar neutrino experiments. It is shown that νμνe \nu_\mu \leftrightarrows \nu_e oscillations with 0.6Δm2100eV2 0.6 \le \Delta m^2 \le 100 \, \mathrm{eV}^2 and amplitude larger than 2×103 2 \times 10^{-3} are not compatible with the existing limits on neutrino oscillations if the non-diagonal elements of the mixing matrix Ue3 \left| U_{e3} \right| and Uμ3 \left| U_{\mu3} \right| are small. Thus, if the excess of electron events recently observed in the LSND experiment is due to νμνe \nu_\mu \leftrightarrows \nu_e oscillations, the mixing in the lepton sector is basically different from the CKM mixing of quarks. If this type of mixing is realized in nature, the observation of νμνe \nu_\mu \leftrightarrows \nu_e oscillations would not influence νμντ \nu_\mu \leftrightarrows \nu_\tau oscillations that are being searched for in the CHORUS and NOMAD experiments.Comment: Revtex file, 13 pages + 2 figures (included). The postscript file of text and figures is available at http://www.to.infn.it/teorici/giunti/papers.html or ftp://ftp.to.infn.it/pub/giunti/1995/dftt-25-95/dftt-25-95.ps.

    Associated Charm Production in Neutrino-Nucleus Interactions

    Full text link
    In this paper a search for associated charm production both in neutral and charged current ν\nu-nucleus interactions is presented. The improvement of automatic scanning systems in the {CHORUS} experiment allows an efficient search to be performed in emulsion for short-lived particles. Hence a search for rare processes, like the associated charm production, becomes possible through the observation of the double charm-decay topology with a very low background. About 130,000 ν\nu interactions located in the emulsion target have been analysed. Three events with two charm decays have been observed in the neutral-current sample with an estimated background of 0.18±\pm0.05. The relative rate of the associated charm cross-section in deep inelastic ν\nu interactions, σ(ccˉν)/σNCDIS=(3.622.42+2.95(stat)±0.54(syst))×103\sigma(c\bar{c}\nu)/\sigma_\mathrm{NC}^\mathrm{DIS}= (3.62^{+2.95}_{-2.42}({stat})\pm 0.54({syst}))\times 10^{-3} has been measured. One event with two charm decays has been observed in charged-current νμ\nu_\mu interactions with an estimated background of 0.18±\pm0.06 and the upper limit on associated charm production in charged-current interactions at 90% C.L. has been found to be σ(ccˉμ)/σCC<9.69×104\sigma (c\bar{c} \mu^-)/\sigma_\mathrm{CC} < 9.69 \times 10^{-4}.Comment: 10 pages, 4 figure
    corecore